

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet ww.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-19/0420 of 2019/06/19

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:	POLY-GPG / POLY-GPG PLUS Injection System
Product family to which the above construction product belongs:	Bonded injection type anchor for use in masonry: sizes M6 to M12
Manufacturer:	Simpson Strong-Tie [®] Rue du Camp Z.A.C. des Quatre Chemins F-85400 Sainte Gemme La Plaine Tel. +33 2 51 28 44 00 Fax +33 2 51 28 44 01 Internet www.simpson.fr
Manufacturing plant:	Simpson Strong-Tie [®] Manufacturing Facilities
This European Technical Assessment contains:	21 pages including 15 annexes which form an integral part of the document
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of: This version replaces:	EAD 330076-00-0604, Metal injection anchors for use in masonry

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

The POLY-GPG / POLY-GPG PLUS is a bonded anchor (injection type) for use in masonry consisting of a cartridge with POLY-GPG / POLY-GPG PLUS injection mortar a perforated nylon sleeve, and an anchor rod with hexagon nut and washer in the range of M6, M8, M10 and M12.

The product specification is given in annex A.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and masonry.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation¹ of this European Technical Assessment.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

¹ The technical documentation of this European Technical Assessment is deposited at ETA-Danmark and, as far as relevant for the tasks of the Notified bodies involved in the attestation of conformity procedure, is handed over to the notified bodies.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex C.

Safety in case of fire (BWR 2):

The essential characteristics are detailed in the Annex C.

Hygiene, health and the environment (BWR3):

No performance assessed

Safety in use (BWR4):

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

Sustainable use of natural resources (BWR7)

No performance assessed

Other Basic Requirements are not relevant.

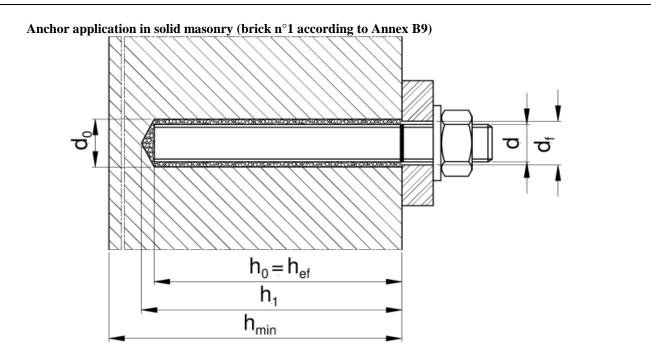
3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with EAD 330076-00-0604, Metal injection anchors for use in masonry.

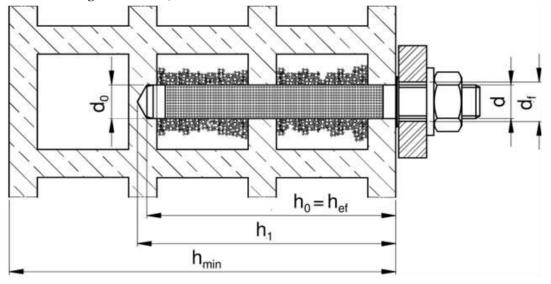
4 Assessment and verification of constancy of performance (AVCP)

4.1 AVCP system

According to the decision 1997/177/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.


5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking.


Issued in Copenhagen on 2019-06-19 by

Thomas Bruun Managing Director, ETA-Danmark

Anchor application in hollow/perforated masonry with nylon sleeve (brick n°2 according to Annex B9)

- d = diameter of the threaded rod
- d₀ = diameter of drill bit
- d_f = diameter of clearance hole in the fixture
- h_{ef} = effective anchorage depth
- h_{min} = minimum thickness of the base material
- h₁ = depth of drilled hole to deepest point

POLY-GPG / POLY-GPG PLUS

Annex A2

Product and intended use (2)

Injection Mortar : POLY-GPG / POLY-GPG PLUS – Resin System

Plastic sleeve for hollow/perforated masonry: nominal dimensions and material

Resin sleeves are the effective way to create a fixing where there is a hollow void, such as for perforated bricks and blocks, or a more porous material for example blockwork. Resin is injected to fill the volume of the sleeve, and then forced through the fine perforations once the metal fixing rod is inserted. This distributes the resin material into the fixing cavity, forming a solid joint between the resin, the sleeve and the fixing.

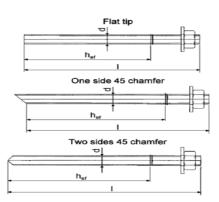
2	
ſ	
U	

Nylon Perforated Sleeve – 16 x 85 Nominal Diameter 16mm Nominal Length 85mm

ſ	
U	

Nylon Perforated Sleeve – 12 x 80 Nominal Diameter 12mm Nominal Length 80mm

Table A1: Minimum curing time


Minimum base material temperature C°	Gel time (working time) In dry/wet conditions	Curing time in dry conditions	Curing time in wet conditions
$0^{\circ}C \leq T_{\text{base material}} < 10^{\circ}C$	20 min	90 min	180 min
10°C ≤ T _{base material} < 20°C	9 min	60 min	120 min
$20^{\circ}C \leq T_{\text{base material}} < 30^{\circ}C$	5 min	30 min	60 min
$30^{\circ}C \leq T_{base material} \leq 40^{\circ}C$	3 min	20 min	40 min

The temperature of the bond material must be $\ge 20^{\circ}$ C

POLY-GPG / POLY-GPG PLUS

Plastic sleeve and curing times

Annex A3

Table A2: Threaded rod dimensions

Anchor size			M6	M8	M10	M12
Diameter of anchor rod	d	[mm] =	6	8	10	12
Size of sleeve	$d_{nom} \; x \; l_s$	[mm] =	12 x 80		16 x 85	
Nominal anchorage depth	h _{ef}	[mm] =	80		85	
Maximum diameter hole in fixture	d_{fix}	$[mm] \leq$	7	9	12	14
Installation torque moment	T _{inst}	[Nm] =	2	2	2	2
Depth of drilled hole to deepest point	h ₁	[mm] =	h_{ef} + 5 mm			

Table A3: Threaded rods materials

Designation	Material				
Threaded rods made of zin	c coated steel				
Threaded rod M6 – M12	Strength class 4.6, 4.8, 5.6, 5.8, 8.8, 10.9 and 12.9 EN ISO 898-1 Steel galvanized $\ge 5\mu m$ EN ISO 4042				
Washer ISO 7089	Hot dipped galvanized $\geq 45 \mu m$ EN ISO 10684 Steel galvanized EN ISO 4042; hot dipped galvanized	I EN ISO 10684			
Nut EN ISO 4032	Strength class 8 EN ISO 898-2 Steel galvanized $\geq 5\mu m$ EN ISO 4042 Hot dipped galvanized $\geq 45\mu m$ EN ISO 10684				
Threaded rods made of sta	inless steel				
Threaded rod M6 - M12	Strength class A2 or A4 – 50, A2 or A4-70 and A4-80) EN ISO 3506-1;			
Washer ISO 7089	Strength class A4-70 and A4-80 EN ISO 3506-1;				
Nut EN ISO 4032	Strength class A4-70 and A4-80 EN ISO 3506-1;				
Threaded rods made of hig	h corrosion resistant steel				
Threaded rod M6 – M12	Strength class 70 or 80. High corrosion resistant steel 1.4529, 1.4565 EN 10088				
Washer ISO 7089	High corrosion resistant steel 1.4529, 1.4565 EN 1008				
Nut EN ISO 4032	Strength class 70 or 80 EN ISO 3506-2; High corrosion resistant steel 1.4529, 1.4565 EN 10088				
confirmation of material a					
POLY	POLY-GPG / POLY-GPG PLUS				
	Materials				

Use:

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 of Regulation 305/2011 (EU) shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

Anchors subject to:

Static and quasi-static loads: M6 to M12

Base materials:

- Solid masonry (use category b) or hollow or perforated masonry (use category c) according to Annex B9. The mortar strength class of the masonry has to be M 2,5 according to EN 998-2:2010 at minimum

Temperature range:

The anchors may be used in the following temperature range: (a) -40° C to $+40^{\circ}$ C (max. short term temperature $+40^{\circ}$ C and max. long term temperature $+24^{\circ}$ C)

Use conditions (Environmental conditions):

Threaded rods:

a) Carbon galvanized steel class 4.6, 4.8, 5.6, 5.8, 8.8, 10.9 or 12.9 according to EN ISO 898-1 for dry internal conditions.

b) Stainless steel A2 or A4-50, A2 or A4-70, A4-80 and HCR class 70 and 80 for structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition.

Nuts and washers:

Corresponding to anchor rod material above mentioned for the different environmental exposures.

Installation:

- Category w/w: installation in to dry or wet environmental conditions.
- Perforation with drilling machine

Proposed design methods:

- Static and quasi-static load: EOTA TR 054, Design Method A.

POLY-GPG / POLY-GPG PLUS

Annex B1

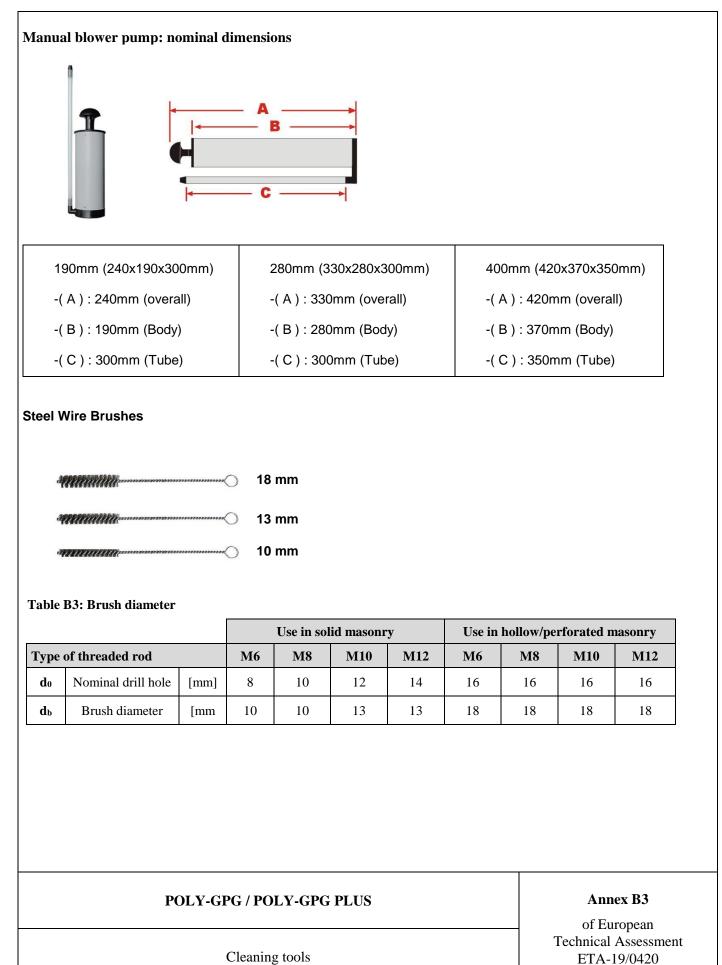
of European Technical Assessment ETA-19/0420

Intended use - Specification

Table B1 Installation data for solid masonry (brick n°1)*						
Size		M6	M8	M10	M12	
Nominal drilling diameter	d ₀ [mm]	8	10	12	14	
Maximum diameter hole in the fixture	d _{fix} [mm]	7	9	12	14	
Embedment depth	h _{ef} [mm]	80	80	85	85	
Depth of the drilling hole	h ₁ [mm]	$h_{ef} + 5 mm$				
Torque moment	T _{inst} [Nm]	1	1	1	1	
Thislanges to be fired	t _{fix,min} [mm]	>0				
Thickness to be fixed $t_{fix,max}$ [mm]		< 1500				
Minimum spacing	S _{min} [mm]	240	240	255	255	
Minimum edge distance	C _{min} [mm]	120	120	127.5	127.5	

* Type of bricks are detailed in the Annex B9

Table B2: Installation data for hollow/perforated masonry (brick $n^\circ \ 2)^*$


Size			M6	N	18	M10		M12
Plastic sleeve			12 x 80			16 x 85		5
Nominal drilling diameter	d_0	[mm]	12	1	2	16		16
Maximum diameter hole in the fixture	d_{fix}	[mm]	7		9	12		14
Embedment depth	\mathbf{h}_{ef}	[mm]	80	8	30	85		85
Depth of the drilling hole	h_1	[mm]			$h_{ef} + 5$	5 mm		
Torque moment	T_{inst}	[Nm]	2	2		2		2
Thickness to be fixed	t _{fix,min}	[mm]	>0					
Thickness to be fixed	t _{fix,max}	[mm]	< 1500					
	$S_{\min, \ }$	[mm]	250	250	2	250		250
Minimum spacing	S _{min,} ⊥	[mm]	120	120		120		120
Minimum edge distance	C _{min}	[mm]	100	100		100		100

* Type of bricks are detailed in the Annex B9

POLY-GPG / POLY-GPG PLUS

Intended use - data

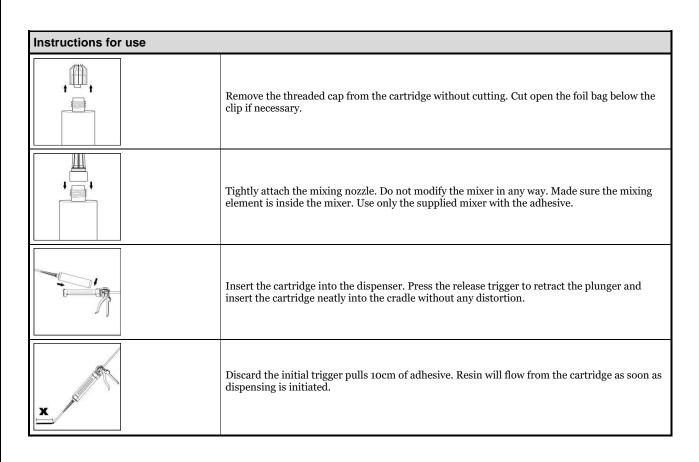
Annex B2

mage	Size Cartridge / Code	Туре
A	165 / 300ml 165 / 300 ml 10:1	Manual
	345 / 380 / 400 / 410 / 420ml 420 ml 10:1 345 ml 10:1	Manual
	165 / 300 / 345 / 380 / 400 / 410 / 420ml 165 / 300 ml 345ml 380 / 400 / 410 / 420 ml 7.4v Tool	Battery
	380 / 400 / 410 / 420 / 825ml 380 / 400 / 410 / 420 ml 825ml	Pneumatic

POLY-GPG / POLY-GPG PLUS

Tools for injection

Annex B4


able B4 - parar	neters: drilling, ł	ole cleaning and installation in solid brick wor	k
Instructions for	use		
Bore hole drillin	g		
		Drill hole to the required embedment depth with a hammer ousing an appropriately sized carbide drill bit.	drill set in rotation-hammer mode
		g an anchor, the bore hole must be free of dust and debris.	
a) Manual air cle	eaning (MAC)		
	X 4	The manual pump may be used for blowing out bore holes Blow out at least 4 times from the back of the bore hole until dust.	return air stream is free of noticeable
•••• <u></u> 0	X 4	Brush 4 times with the specified brush size (brush $\emptyset \ge$ bore h steel brush to the back of the hole (if needed with an extensic it. The brush must produce natural resistance as it enters the small and must be replaced with the proper brush diameter.	on) in a twisting motion and removing
	X 4	Blow out again with manual pump at least 4 times until retu dust.	n air stream is free from noticeable
b) Compressed a	ir cleaning (CAC)		
6 Bar	X 2	Blow 2 times from the back of the hole (if needed with a nozz oil-free compressed air (min. 6 bar at 6m³/h) until return air	
** *_0	X 2	Brush 2 times with the specified brush size (brush $\emptyset \ge$ bore h steel brush to the back of the hole (if needed with an extension it. The brush must produce natural resistance as it enters the small and must be replaced with the proper brush diameter.	on) in a twisting motion and removing
6 Bar	X 2	Blow out again with compressed air at least 2 times until retu dust.	ırn air stream is free from noticeable
	POLY-GP	PG / POLY-GPG PLUS	Annex B5
Procedure for solid masonry (1)			of European Technical Assessment ETA-19/0420

Instructions for use			
t		nove the threaded cap from the cartridge. Cut open t cessary.	he foil bag below the clip if
₩ ₩ ₩		htly attach the mixing nozzle. Do not modify the mixe ting element is inside the mixer. Use only the supplied	
	Inse	ert the cartridge into the dispenser gun.	
×	init	card the initial trigger pulls of adhesive. Depending o ial amount of adhesive mix must be discarded. card quantities are – 10cm for all cartridges	n the size of the cartridge, an
Instructions for use			
75%		Insert the nozzle to the bottom of the hole and inject the res	in until the hole is filled 75%
		Insert the anchor, slowly with a slight twisting motion into t leave the fixing until minimum curing (loading) times has el	he hole. Remove excess resin and apsed
]	POLY-GPG	/ POLY-GPG PLUS	Annex B6

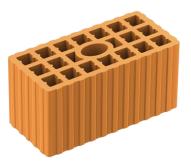
Procedure for solid masonry (2)

Instructions for use		
Bore hole drilling		
	Drill hole to the required embedment depth with a har using an appropriately sized carbide drill bit.	nmer drill set in rotation-hammer mode
Bore hole cleaning Just	before setting an anchor, the bore hole must be free of dust and debr	ris.
a) Manual air cleaning (l	IAC)	
X4	The manual pump may be used for blowing out bore he Blow out at least 4 times from the back of the bore hole noticeable dust.	
x 4	Brush 4 times with the specified brush size (brush $\emptyset \ge$ steel brush to the back of the hole (if needed with an expression removing it. The brush must produce natural resistance brush is too small and must be replaced with the properties of the brush is too small and must be replaced with the properties of the brush is too small and must be replaced with the properties of the brush is too small and must be replaced with the properties of the brush is too small and must be replaced with the properties of the brush is too small and must be replaced with the properties of the brush is too small and must be replaced with the properties of the brush is too.	xtension) in a twisting motion and ce as it enters the bore hole. If not, the
X4	Blow out again with manual pump at least 4 times unt dust.	il return air stream is free from noticeable
b) Compressed air clean	ng (CAC)	
Bar X 2	Blow 2 times from the back of the hole (if needed with with oil-free compressed air (min. 6 bar at 6m ³ /h) unt dust.	
× • • 0 X 2	Brush 2 times with the specified brush size (brush $\emptyset \ge$ the steel brush to the back of the hole (if needed with a removing it. The brush must produce natural resistanc brush is too small and must be replaced with the properties of the brush is too small and must be replaced with the properties.	n extension) in a twisting motion and ce as it enters the bore hole. If not, the
₿ar X 2	Blow out again with compressed air at least 2 times un noticeable dust.	til return air stream is free from
	POLY-GPG / POLY-GPG PLUS	Annex B7 of European
Proc	edure for hollow/perforated masonry (1)	Technical Assessmer ETA-19/0420

in hollo hmial Table D5 d installati dmilli . . .



Instructions for use	
-	Introduce the sleeve of suitable dimension (see table) to the back of the hole so that the collar is level with the hole face. The cap may be opened to allow full nozzle insertion.
100%	Insert the nozzle to the end of the sleeve and inject the resin until the sleeve is 100% filled. Close the cap.
	Insert the anchor, slowly with a slight twisting motion into the sleeve. Remove excess resin and leave the fixing until minimum curing (loading) times has elapsed


POLY-GPG / POLY-GPG PLUS

Procedure for hollow/perforated masonry (2)

Annex B8

Category b: Solid clay masonry: **Mattone pieno UNI (12.6.25)** Bulk density class ρ =1.6 kg/dm³ Minimum compressive strength fb=18 MPa

Category c: Hollow masonry: **Doppio UNI (12.12.25)** Bulk density class ρ=0.9 kg/dm³ Minimum compressive strength fb=6.0 MPa

POLY-GPG / POLY-GPG PLUS

Type and dimensions of brick

Annex B9

ESSENTIAL CHARACTERISTICS	PERFORMANCE					
Installation parameters			M6	M8	M10	M12
d		[mm]	6	8	10	12
d ₀ category b (solid masonry)		[mm]	8	10	12	14
d_0 category c (hollow or perforated mason	y)	[mm]	12	12	16	16
Type of plastic sleeve for use in category c			12x80	12x80	16x85	16x85
d _{fix}		[mm]	7	9	12	14
h ₁	[mm]	$h_{ef} + 5 mm$				
t.	Min	[mm]	> 0			
t _{fix}	Max	[mm]	\leq 1500 mm			
T _{inst} category b (solid masonry)		[Nm]	1	1	1	1
T _{inst} category c (hollow or perforated masonry)		[Nm]	2	2	2	2
S _{min} category b (solid masonry)		[mm]	240	240	255	255
C _{min} category b (solid masonry)		[mm]	120	120	127.5	127.5
S_{min} category c (hollow masonry) $S_{min,\parallel}$		[mm]	250	250	250	250
S _{min} category c (hollow) S _{min,⊥}		[mm]	120	120	120	120
C _{min} category c (hollow masonry)		[mm]	100	100	100	100
* Resistance for tensile and shear load Temperature range -40°C/+40°C ($T_{mlp} = 24$ °C)			M6	M8	M10	M12
Drich - 01 (colid)	N _{Rk}	[kN]	4	4	5	5
Brick n°1 (solid)	V _{Rk}	[kN]	2	2	6	6
	N _{Rk}	[kN]	0,75	0,75	1,5	1,5
Brick n°2 (hollow)	V _{Rk}	[kN]	1,5	1,5	1,5	1,5

Table C2: Characteristic bending moments

Size			M6	M8	M10	M12
Characteristic resistance with standard threaded rod grade 4.6	M _{Rk,s}	[Nm]	6	15	30	52
Partial safety factor	γ_{Ms}	[-]		1,0	67	
Characteristic resistance with standard threaded rod grade 5.8	M _{Rk,s}	[Nm]	8	19	37	66
Partial safety factor	γ_{Ms}	[-]		1,2	25	
Characteristic resistance with standard threaded rod grade 8.8	M _{Rk,s}	[Nm]	12	30	60	105
Characteristic resistance with standard threaded rod grade 10.9	M _{Rk,s}	[Nm]	15	37	75	131
Partial safety factor	γ_{Ms}	[-]	1,25			
Characteristic resistance with standard threaded rod stainless steel A2-70, A4-70 and HCR (class 70)	M _{Rk,s}	[Nm]	11	26	52	92
Partial safety factor	γ_{Ms}	[-]		1,	56	
Characteristic resistance with standard threaded rod stainless steel A4-80 and HCR (class 80)	M _{Rk,s}	[Nm]	12	30	60	105
Partial safety factor	γ _{Ms}	[-]		1,	33	•

POLY-GPG / POLY-GPG PLUS

Performance for static and quasi-static loads: Resistances

ESSENTIAL CHARACTERISTICS	PERFORMANCE						
* Resistance for tensile and shear load Temperature range -40°C/+40°C (T_{mlp} :	M6	M8	M10	M12			
γ _{Mm} [-] Category w/w			2,50				
Dericht m ⁰ 1	$S_{cr,N}$	[mm]	240	240	255	255	
Brick n°1	C _{cr,N}	[mm]	120	120	127,5	127,5	
	$S_{cr,N, { \! }}$	[mm]	250	250	250	250	
Brick n°2	$S_{cr,N} \perp$	[mm]	120	120	120	120	
	C _{cr,N}	[mm]	100	100	100	100	
β coefficient for in situ test (ETAG 029 Temperature range: -40°C/+40°C	M6	M8	M10	M12			
Brick Nº 1 - Solid brick	β	[-]	0,64	0,64	0,66	0,66	
Brick Nº 2 - Hollow/perforated brick	β	[-]	0,64	0,64	0,66	0,66	
Displacement under service load Tensile load Temperature range -40°C/+40°C (T _{mlp} :	= 24°C)						
Brick n°1 – Solid brick			M6	M8	M10	M12	
Admissible service load in tensile	F	[kN]	,	14	1,4		
Displacement	δ_{N0}	[mm]	0,14	0,14	0,07	0,05	
	δ_{N^∞}	[mm]	0,28	0,28	0,13	0,09	
Brick n°2 – Hollow/perforated brick			M6 With sleeve	M8 With sleeve	M10 With sleeve	M12 With sleeve	
Admissible service load in tensile	F	[kN]	0,21		0,43		
Displacement	δ_{N0}	[mm]	0,07	0,07	0,16	0,11	
	δ_{N^∞}	[mm]	0,13	0,13	0,31	0,22	

POLY-GPG / POLY-GPG PLUS

Performance for static, quasi-static: Displacements

Table C3 cont.: Characteristic values for tension and shear load.

ESSENTIAL CHARACTERISTICS	5		PERFORMANCE				
Displacement under service load Shear load Temperature range -40°C/+40°C ($T_{mlp} = 24$ °C)							
Brick n°1 – Solid brick		M6	M8	M10	M12		
Admissible service load in shear	F	[kN]	0,	57	1,71		
Displacement	δ_{V0}	[mm]	0,15	0,15	0,26	0,27	
	δ_{V^∞}	[mm]	0,22	0,22	0,39	0,41	
Brick n°2 – Hollow/perforated brick		M6 With sleeve	M8 With sleeve	M10 With sleeve	M12 With sleeve		
Admissible service load in shear	F	[kN]	0,43				
Displacement	δ_{V0}	[mm]	1,01	1,01	0.5	0.36	
Displacement	δ_{V^∞}	[mm]	1,52	1,52	0.74	0.54	

Table C4: Reaction to fire.

ESSENTIAL CHARACTERISTICS	PERFORMANCE
Reaction to fire	In the final application the thickness of the mortar layer is about 1 to 2 mm and most of the mortar is material classified class A1 according to EC Decision 96/603/EC. Therefore, it may be assumed that the bonding material (synthetic mortar or a mixture of synthetic mortar and cementitious mortar) in connection with the metal anchor in the end use application do not make any contribution to fire growth or to the fully developed fire and they have no influence to the smoke hazard.

Table C5: Resistance to fire.

ESSENTIAL CHARACTERISTICS	PERFORMANCE
Resistance to fire	NPA

Annex C3 of European Technical Assessment ETA-19/0420

Performance for static, quasi-static and seismic loads: Displacements