

ETA-Danmark A/S Göteborg Plads 1 DK-21590 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-19/0627 of 2019/09/26

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:	POLY-GPG [®] / POLY-GPG [®] PLUS Injection System for post-installed rebar connections
Product family to which the above construction product belongs:	Post-installed rebar connections with POLY-GPG [®] / POLY-GPG [®] PLUS injection mortar: sizes Ø8 to Ø12 mm
Manufacturer:	Simpson Strong-Tie [®] Rue du Camp Z.A.C. des Quatre Chemins F-85400 Sainte Gemme La Plaine Tel. +33 2 51 28 44 00 Fax +33 2 51 28 44 01 Internet www.simpson.fr
Manufacturing plant:	Simpson Strong-Tie [®] Manufacturing Facilities
This European Technical Assessment contains:	17 pages including 12 annexes which form an integral part of the document
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of: This version replaces:	EAD 330087-00-0601, Systems for post-installed rebar connections with mortar

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

The subject of this assessment are the post-installed connections, by anchoring or overlap connection joint consisting of steel reinforcing bars (rebars) in existing structures made of normal weight concrete, using injection mortar POLY-GPG[®]/ POLY-GPG[®] PLUS in accordance with the regulations for reinforced concrete construction. The design of the post-installed rebar connections shall be done in accordance with EN 1992-1-1 (Eurocode 2).

Reinforcing bars with diameters from Ø8 to Ø12 mm and POLY-GPG[®]/ POLY-GPG[®] PLUS injection mortar are used for the post-installed rebar connections. The steel element is placed into a drilled hole filled with a mortar and is anchored by the bond between embedded element, injection mortar and concrete.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation¹ of this European Technical Assessment.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

¹ The technical documentation of this European Technical Assessment is deposited at ETA-Danmark and, as far as relevant for the tasks of the Notified bodies involved in the attestation of conformity procedure, is handed over to the notified bodies.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR1):

The essential characteristics are detailed in the Annex C.

Safety in case of fire (BWR2):

Reaction to fire: Rebar connections satisfy requirements for Class A1.

Resistance to fire: See annex C

Hygiene, health and the environment (BWR3):

No performance assessed.

Safety in use (BWR4):

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

Sustainable use of natural resources (BWR7)

No performance determined

Other Basic Requirements are not relevant.

3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with the EAD 330087-00-0601, Systems for post-installed rebar connections with mortar.

4 Assessment and verification of constancy of performance (AVCP)

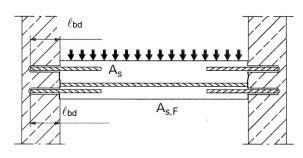
4.1 AVCP system

According to the decision 96/582/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.

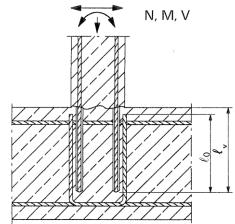
5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

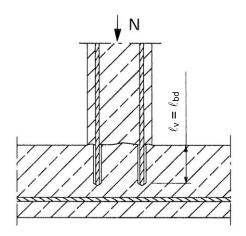
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking

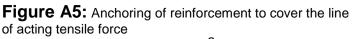
Issued in Copenhagen on 2019-09-26 by


Thomas Bruun Managing Director, ETA-Danmark

Installation post installed rebar


Figure A1: Overlapping joint for rebar connections of slabs and beams


Figure A3: End anchoring of slabs or beams (e.g. designed as simply supported)



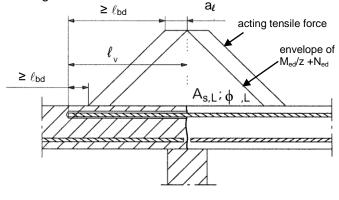
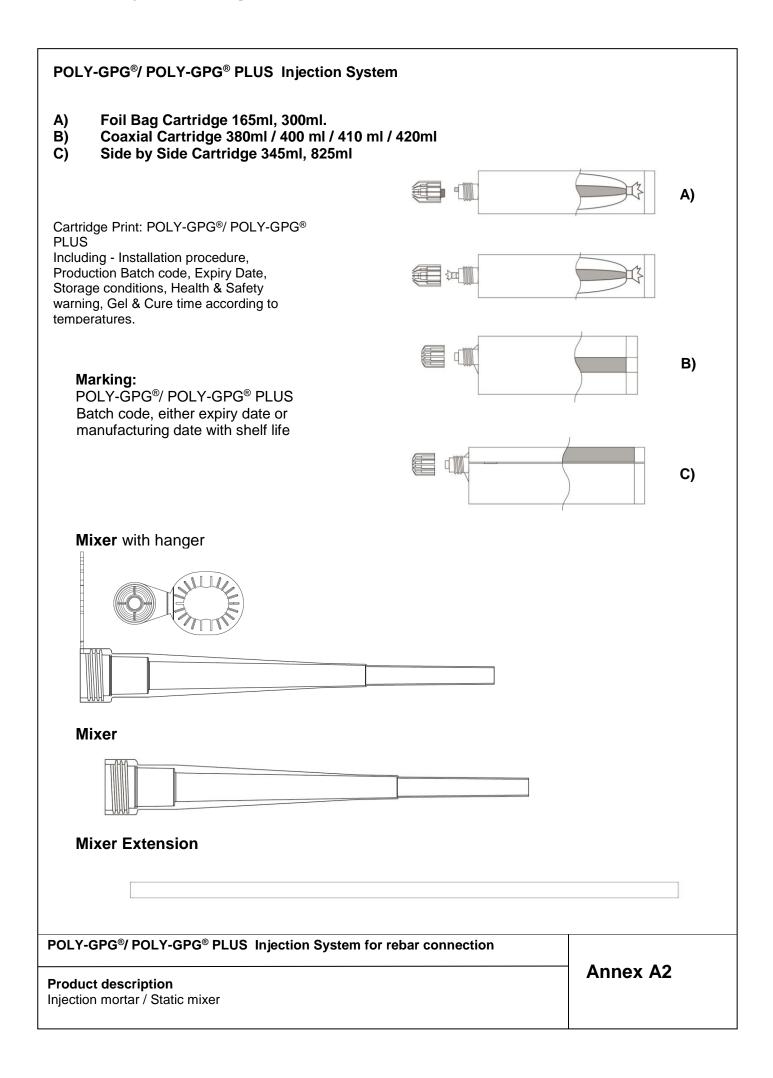

Figure A2: Overlapping joint at a foundation of a wall or column where the rebars are stressed in tension

Figure A4: Rebar connection for components stressed primarily in compression. The rebars sre stressed in compression


Note to Figure A1 to A5:

In the Figures no transverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1:2004+AC:2010.

Preparing of joints according to Annex B2

POLY-GPG[®]/ POLY-GPG[®] PLUS Injection System for rebar connection

Product description Installed condition and examples of use for rebars Annex A1

Reinforcing bar (rebar): ø8, ø10, ø12,

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05¢ ≤ h ≤ 0,07¢ (¢: Nominal diameter of the bar; h: Rip height of the bar)

Table A1: Materials

Designation	Material		
Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$		

Product description Specifications Rebar

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads.
- Fire exposure

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C12/15 to C50/60 according to EN 206-1:2000.
- Maximum chloride concrete of 0,40% (CL 0.40) related to the cement content according to EN 206-1:2000.
- Non-carbonated concrete.

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar.

The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010.

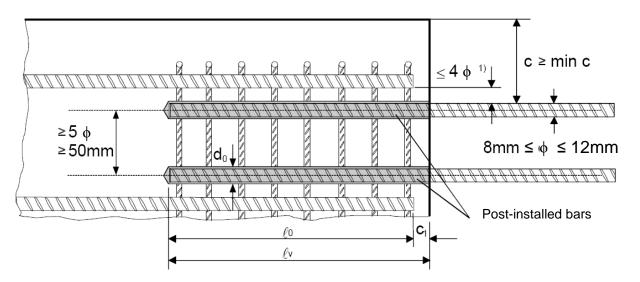
The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Temperature Range:

• - 40°C to +40°C (max. short term temperature +40°C and max long term temperature +24°C).

Design:

- · Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- · Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2004+AC: 2010 and Annex B2.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.
- Anchorages under fire exposure are designed in accordance with EN 1992 1- 2:2004+AC:2008


Installation:

- · Dry or wet concrete.
- · It must not be installed in flooded holes.
- Hole drilling by hammer drill (HD) or compressed air drill mode (CD).
- The installation of post-installed rebar resp. tension anchors shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

POLY-GPG [®] / POLY-GPG [®] PLUS Injection System for rebar connection	Annex B1
Intended use Specifications	

Figure B1: General construction rules for post-installed rebars

- Only tension forces in the axis of the rebar may be transmitted
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC: 2010.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.

¹⁾ If the clear distance between lapped bars exceeds 4φ, then the lap length shall be increased by the difference between the clear bar distance and 4φ.

The following applies to Figure B1:

- c concrete cover of post-installed rebar
- c1 concrete cover at end-face of existing rebar
- min c minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
 φ diameter of post-installed rebar
- ℓ_0 lap length, according to EN 1992-1-1:2004+AC: 2010, Section 8.7.3
- ℓ_v effective embedment depth, $\geq \ell_0 + c_1$
- d₀ nominal drill bit diameter, see Annex B5

POLY-GPG [®] / POLY-GPG [®] PLUS Injection System for rebar connection	Annex B2
Intended use General construction rules for post-installed rebars	

Table B1: Minimum concrete cover min c¹⁾ of post-installed rebar depending of drilling method

Drilling aid 1000C-1

Drilling method	Rebar diameter	Without drilling aid	With drilling aid		
Hammer drilling (HD)	≤ 12 mm	$30 \text{ mm} + 0,06 \cdot \ell_{v} \ge 2 \phi$	$30 \text{ mm} + 0,02 \cdot \ell_{v} \ge 2 \phi$		
Compressed air drilling (CD)	≤ 12 mm	50 mm + 0,08 · ℓ _v	50 mm + 0,02 · ℓ _v		

1) see Annex B2 & Figures B1

Comments: The minimum concrete cover acc. EN 1992-1-1:2004+AC:2010 must be observed

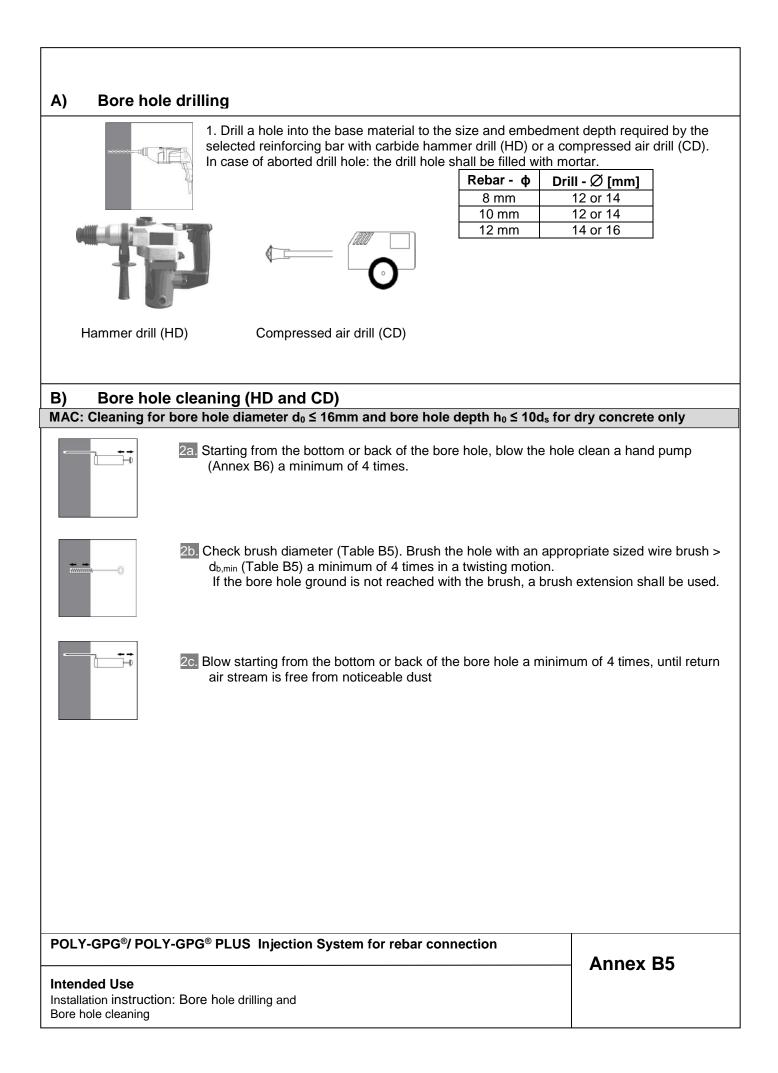
Table B2: maximum embedment depth $\ell_{v,max}$

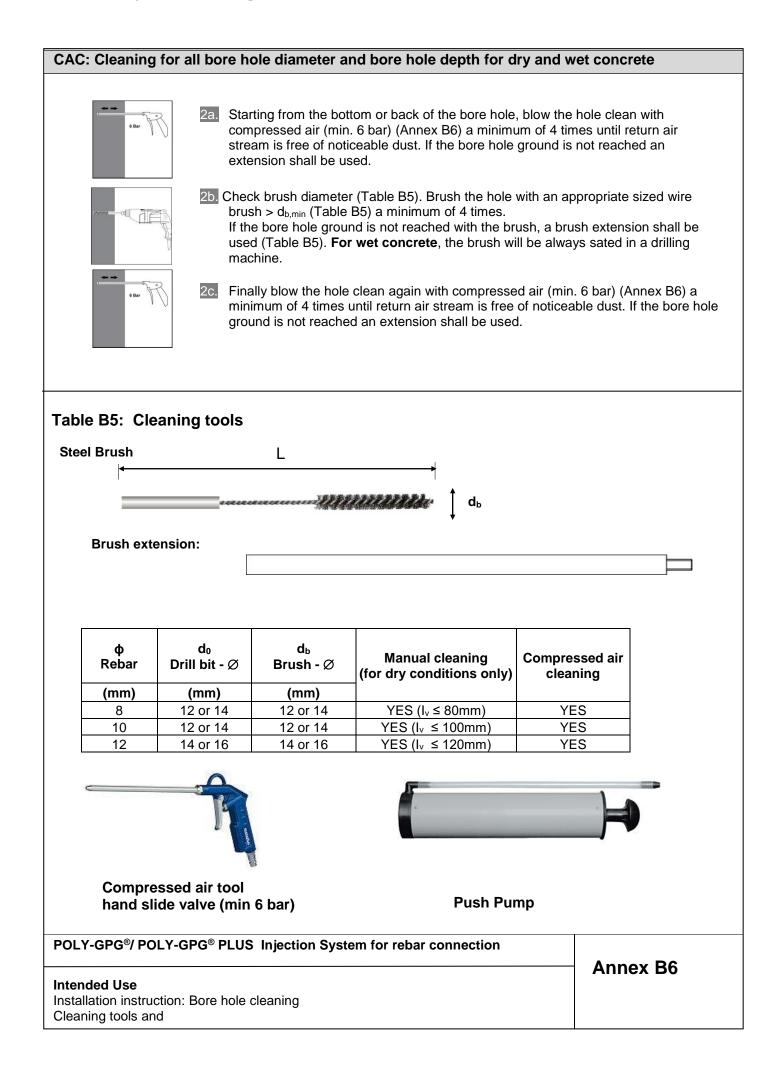
Rebar				
φ	$\ell_{v,max}$ [mm]			
8 mm	750			
10 mm	750			
12 mm	750			

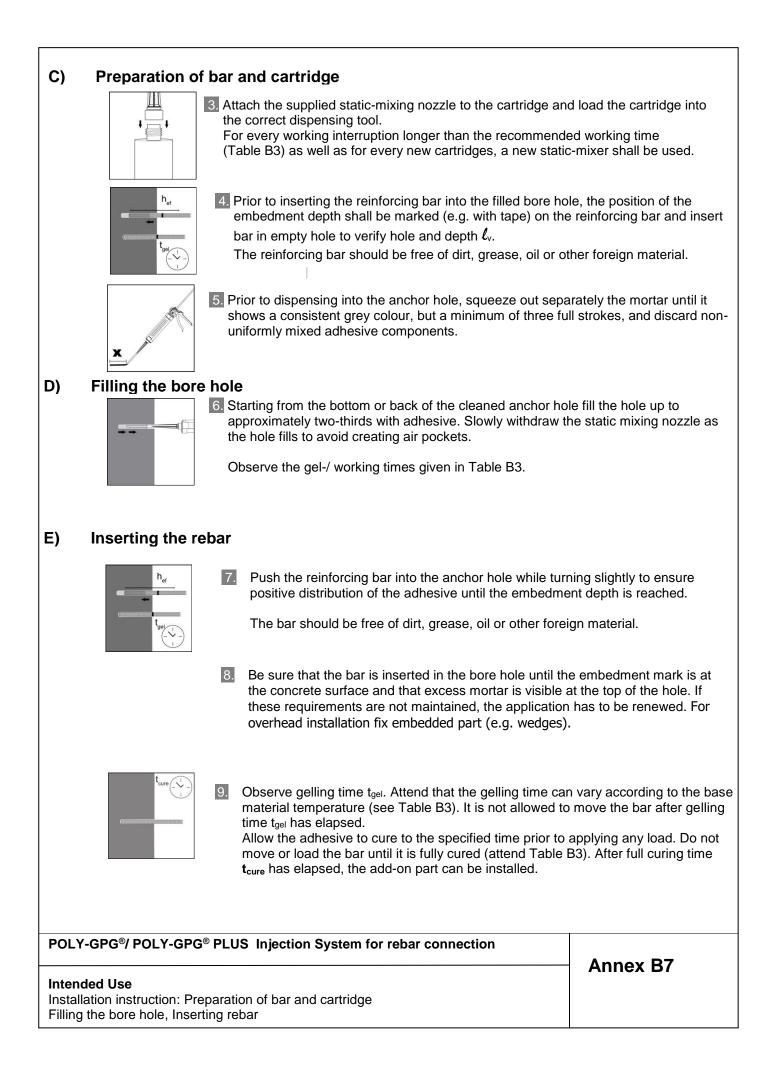
Table B3: Base material temperature, gelling time and curing time

Minimum base material temperature C°		Gel time (working time) In dry/wet concrete	Curing time in dry concrete	Curing time in wet concrete		
0°C	\leq	Tbase material	< 10°C	20 min	90 min	180 min
10°C	\leq	Tbase material	< 20°C	9 min	60 min	120 min
20°C	\leq	T _{base} material	< 30°C	5 min	30 min	60 min
30°C	\leq	T _{base} material	\leq 40°C	3 min	20 min	40 min

 $^{1)}\,t_{gel}$: maximum time from starting of mortar injection to completing of rebar setting. $^{2)}\,Cartridge$ temperature \underline{must} be at minimum +20°C


POLY-GPG [®] / POLY-GPG [®] PLUS Injection System for rebar connection	Annov B2
Intended use Minimum concrete cover Maximum embedment depth / working time and curing times	Annex B3


Table B4: Dispensing tools


Image	Size Cartridge / Code	Туре
A	165 / 300ml 165 / 300 ml 10:1	Manual
	345 / 380 / 400 / 410 / 420ml 420 ml 10:1 345 ml 10:1	Manual
	165 / 300 / 345 / 380 / 400 / 410 / 420ml 165 / 300 ml 345ml 380 / 400 / 410 / 420 ml 7.4v Tool	Battery
	380 / 400 / 410 / 420 / 825ml 380 / 400 / 410 / 420 ml 825ml	Pneumatic

POLY-GPG[®]/ POLY-GPG[®] PLUS Injection System for rebar connection

Intended Use Dispensing tools

Minimum anchorage length and minimum lap length

The minimum anchorage length $\ell_{b,min}$ and the minimum lap length $\ell_{0,min}$ according to EN 1992-1-1:2004+AC:2010 ($\ell_{b,min}$ acc. to Eq. 8.6 and Eq. 8.7 and $\ell_{0,min}$ acc. to Eq. 8.11) shall be multiply by the amplification factor α_{lb} according to Table C1.

The design bond strength f_{bd} according to EN 1992-1-1:2004+AC:2010 (Eq.8.3) shall be multiplied by the factor k_b according to Table C2 to determine the design values of the ultimate bond stress for post installed rebars $f_{bd,PIR}$, which are given in Table C3.

Table C1: Amplification factor α_{lb} related to concrete class and drilling method

Concrete class	Drilling method	Rebar size	Amplification factor α_{lb}
C12/15 to C50/60	Hammer drilling (HD) and compressed air drilling (CD)	Ø8 mm to Ø12 mm	1,5

Table C2: Bond efficiency factor kb

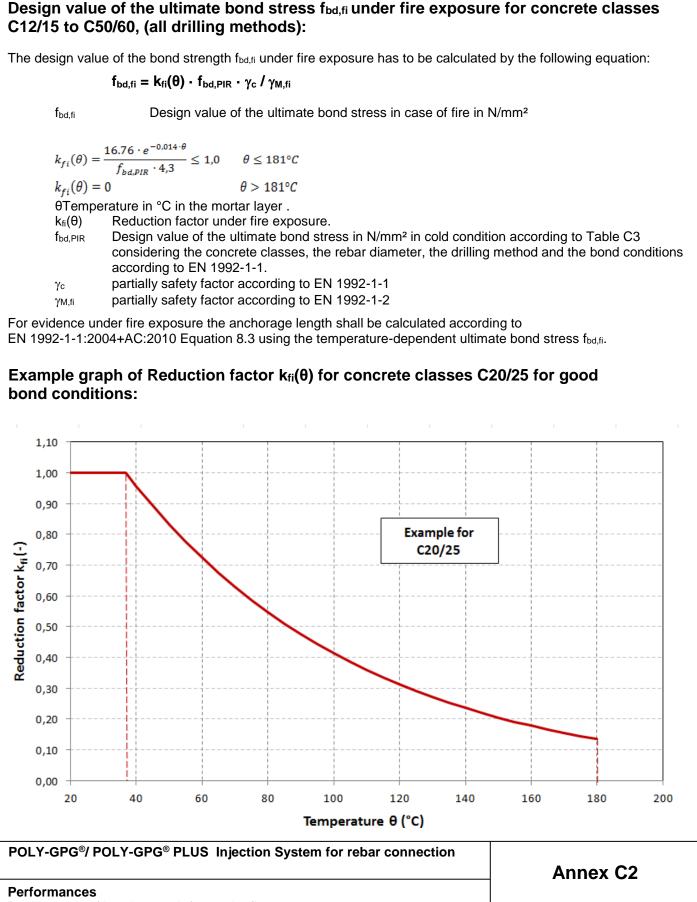

Rebar - Ø	Concrete class								
ф	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 mm							0,62	0,58	0,53
10 mm	1,0	1,0	1,0	0,85	0,77	0,68	0.70	0.00	0.02
12 mm	-						0,73	0,68	0,63

Table C3: Design values of the ultimate bond stress fbd,PIR in N/mm² for all drilling methods for good conditions

according to EN 1992-1-1:2004+AC:2010 for good bond conditions (for all other bond conditions multiply the values by 0.7)

Rebar - Ø	Concrete class								
ф	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 mm							2,3	2,3	2,3
10 mm	1,6	2,0	2,3	2,3	2,3	2,3	2.7	0.7	0.7
12 mm							2,7	2,7	2,7

Performances Annex C1 Amplification factor α_{lb} , reduction factor k_b Design values of ultimate bond resistance f_{bd}

Design value of bond strength fbd,fi under fire exposure